

- Set: A set is well defined collections of objects.
 - (i) Objects, elements and membens of set ane synonyms tenms.
 - (ii) Sets are usually denoted by capital lettens A. B. C. X. Y. Z etc.
 - (iii) The elements of a set ane represented by small letters a, b, c, x, y, z etc.
- Roasten on tabulan form: Elements are listed, sepanated by commas and enclosed within curry brackets {} Example: {a,e,i,o,u} set of vowels.
- Set builden form: All elements possess a single common property. Example: { x:x is a vowel in English alphabet}
- Candinal number: Number of elements of a Set A is called candinal number and denoted by n(A).
- Empty Set: A set which does not contain any element is called the empty set on the null set on the void set.
- Finite Set: A set which is empty on consists of a definite number of elements is called finite set.
- Infinite Set: A set which is not empty & consists of a indefinite number of elements is called infinite set.
- Faual Set: Two sets A and B are said to be equal if they have exactly the same elements and we write A = B.

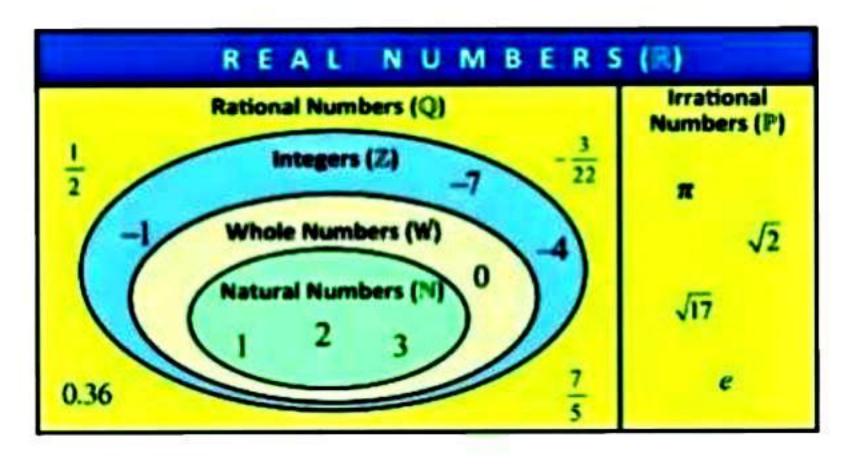
 Otherwise, the sets are said to be unequal and we write $A \neq B$
- Subset: A set A is said to be a subset of a set B if every element of A is also an element of B. $A \subset B$ if $a \in A \Rightarrow a \in B$
- Propen subset: If ACB and A+B, then A is called a propen subset of B and B is called superset of A.
- Singleton set: If a set A has only one element, we call it singleton set.
- Note: Subsets of set of neal numbers NCZCQ, QCR, NFT T = Innational numbers
- Intervals as subsets of R: (a,b) = {x: a < x < b} is an open interval, does not contain end points a & b.
 - [a,b] = {x: a < x < b} is an closed interval, contain end points also.
 - [a,b) = fx: a < x < b] is an open interval from a to b, including a but excluding b.
 - (a,b] = fx: a < x ≤ b} is an open interval from a to b, including b but excluding a.
- Length of any interval: The number (b-a) is called the length of any of the intervals (a,b), [a,b], (a,b] on (a,b].
- Powen Set: The collection of all subsets of a set A is called the powen set of A. denoted by P(A).
- Universal Set: A set that contains all sets in a given context is called Universal Set denoted by U.
- Union of Sets: The union of A and B is the set which consists of all the elements of B, the common elements being taken only once. The symbol 'U' is used to denote the union.

AUB = { x : x E A on x E B}

Some Properties of the operation of union

- (i) AUB = BUA (Commutative law)
- (ii) (AUB)UC = AU (BUC) (Associative law) (V) UUA = U (Law of U)
- (iii) A U = A (Law of identity element, of is the identity of U)

(Idempotent law)


Intensection of Sets: The intensection of A and B is the set of all the elements and B. The symbol 'n' is used to denote the intensection. $A \cap B = \{ x : x \in A \text{ and } x \in B \}$ some Properties of the operation of intensection (i) An B = 8 n A (Commutative law) (ii) (AAB)AC = AA(BAC) (Associative law) (iii) | O A = O, U A = A (Law of ond U) (iv) AAA = A (Idempotent law) (v) An(8UC) - (An 8) U (An C) (Distributive law) i.e. n distributes over U. Diffenence of Sets: The diffenence of the two sets A and B in this onden is the set of elements which belong to A but not to B. $A-B = \{x : x \in A \text{ and } x \notin B\}$ Complement of a Set: Let U be the universal set and A a subset of U. Then the complement of A is the set of all elements of U which are not the elements of A. denoted by A' A' = {x:x & U and x & A } obviously A' = U-A Some properties of Complement Sets in AUA' = U ANA' = Ø Complement laws : (A U B)' = A' N B' (ii) (A N B)' - A' U B' De Mongan's law : 3. Law of double complementation: (A')' - A 1. Laws of empty set and universal set: 0' = U and U' = 0 Practical Problems on Union and intensection of two sets: (i) n(AUB) = n(A) + n(B) (II) n(AUB) = n(A) + n(B) - n(ANB)

(III) If A, B and C ane finite sets, then

n(AUBUC) = n(A) + n(B) + n(C) - n(ANB) - n(BNC) - n(ANC) + n(ANBNC)

- Note: If A is a subset of the universal set U, then its complement A' is also a subset of U.
- Tmpontant Note:

=	equal to	<	less then
#	Not equal to	4	less then equal to
c	subset	>	gneaten than
¢	not a subset	1	gneaten than equal to
⇒	implies	n	Supenset
*	if and only if	Þ	Not superset
ε	belongs to or contains in	U	Union
*	fon all	0	Intersection
:	such that		

- N: the set of the all natural numbers.
- Z: the set of the all integens.
- Q: the set of the all national numbers.
- R: the set of the all neal numbers.
- Z: the set of the all positive integens.
- Q: the set of the all positive national numbers.
- R': the set of the all positive neal numbers.